petitparser.nim
35.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
import context, functions
# Parser
type
Parser* = ref object of RootObj
method parseOn*(self: Parser, context: Context): Result =
raise newException(Exception, "should be implemented by subclass")
method parse*(self: Parser, input: string): Result =
self.parseOn(newContext(input, 0))
method accept*(self: Parser, input: string): bool =
self.parse(input).isSuccess
method matches*[T](self: Parser, input: string): seq[T] =
result = @[]
self.andd.map(result.add).seq(any).orr(any).star.parse(input)
method getChildren*(self: Parser): seq[Parser] =
@[]
method hasEqualProperties*(self, other: Parser): bool =
true
method replace*(self, source, target: Parser) =
# no referring parsers
discard
method name*(self: Parser): string =
"Parser"
method `$`*(self: Parser): string =
self.name
# public String toString() {
# return getClass().getSimpleName();
# }
# DelegateParser
type
DelegateParser* = ref object of Parser
delegate*: Parser
proc newDelegateParser*(delegate: Parser): DelegateParser =
DelegateParser(delegate: delegate)
method parseOn*(self: DelegateParser, context: Context): Result =
self.delegate.parseOn(context)
method replace*(self: DelegateParser, source, target: Parser) =
procCall(Parser(self).replace(source, target))
if self.delegate == source:
self.delegate = target
method getChildren(self: DelegateParser): seq[Parser] =
@[self.delegate]
method copy(self: DelegateParser): Parser =
newDelegateParser(self.delegate)
method name*(self: DelegateParser): string =
"DelegateParser"
## A parser that optionally parsers its delegate, or answers nil.
type
OptionalParser*[T] = ref object of DelegateParser
otherwise*: T
proc newOptionalParser*[T](delegate: Parser, otherwise: T): OptionalParser =
OptionalParser(delegate: delegate, otherwise: otherwise)
# public OptionalParser(Parser delegate, Object otherwise) {
# super(delegate);
# this.otherwise = otherwise;
# }
method parseOn*(self: OptionalParser, context: Context): Result =
result = self.delegate.parseOn(context)
if result.isSuccess:
return
return context.success(self.otherwise)
# public Result parseOn(Context context) {
# Result result = delegate.parseOn(context);
# if (result.isSuccess()) {
# return result;
# } else {
# return context.success(otherwise);
# }
# }
method hasEqualProperties*(self: OptionalParser, other: OptionalParser): bool =
procCall(Parser(self).hasEqualProperties(Parser(other))) and self.otherwise == other.otherwise
# protected boolean hasEqualProperties(Parser other) {
# return super.hasEqualProperties(other) &&
# Objects.equals(otherwise, ((OptionalParser) other).otherwise);
# }
method copy*(self: OptionalParser): Parser =
newOptionalParser(self.delegate, self.otherwise)
# @Override
# public Parser copy() {
# return new OptionalParser(delegate, otherwise);
# }
method name*(self: OptionalParser): string =
"OptionalParser"
# An abstract parser that repeatedly parses between 'min' and 'max' instances of its delegate.
type
RepeatingParser* = ref object of DelegateParser
min*: int
max*: int
const UNBOUNDED = 1
proc newRepeatingParser*(delegate: Parser, min: int, max: int): RepeatingParser =
if min < 0:
raise newException(Exception, "Invalid min repetitions")
if max != UNBOUNDED and min > max:
raise newException(Exception, "Invalid max repetitions")
RepeatingParser(delegate: delegate, min: min, max: max)
method hasEqualProperties*(self: RepeatingParser, other: RepeatingParser): bool =
# No super implementation in DelegateParser
procCall(Parser(self).hasEqualProperties(Parser(other))) and self.min == other.min and self.max == other.max
method name*(self: RepeatingParser): string =
"RepeatingParser"
method `$`*(self: RepeatingParser): string =
result = procCall($Parser(self)) & "[" & $self.min & ".."
if self.max == UNBOUNDED:
result = result & "*]"
else:
result = result & $self.max & "]"
# public String toString() {
# return super.toString() + "[" + min + ".." + (max == UNBOUNDED ? "*" : max) + "]";
# }
# A greedy parser that repeatedly parses between 'min' and 'max' instances of its delegate.
type
PossessiveRepeatingParser = ref object of RepeatingParser
proc newPossessiveRepeatingParser*(delegate: Parser, min, max: int): PossessiveRepeatingParser =
PossessiveRepeatingParser(newRepeatingParser(delegate, min, max))
method name*(self: PossessiveRepeatingParser): string =
"PossessiveRepeatingParser"
method copy*(self: PossessiveRepeatingParser): Parser =
newPossessiveRepeatingParser(self.delegate, self.min, self.max)
method parseOn*[T](self: PossessiveRepeatingParser, context: Context): Result =
var
current = context
elements = newSeq[T]()
while elements.len < self.min:
result = self.delegate.parseOn(current)
if result.isFailure:
return
elements.add(get[T](result))
current = result
while self.max == UNBOUNDED or elements.len < max:
result = self.delegate.parseOn(current)
if result.isFailure:
return current.success[T](elements)
elements.add(get[T](result))
current = result
current.success[T](elements)
# Abstract parser that parses a list of things in some way (to be specified by the subclasses).
type
ListParser* = ref object of Parser
parsers*: seq[Parser]
#proc newListParser*(parsers: seq[Parser] not nil): ListParser =
# ListParser(parsers: parsers)
method replace*(self: ListParser, source, target: Parser) =
procCall(Parser(self).replace(source, target))
for i in 0..high(self.parsers):
if self.parsers[i] == source:
self.parsers[i] = target
# public void replace(Parser source, Parser target) {
# super.replace(source, target);
# for (int i = 0; i < parsers.length; i++) {
# if (parsers[i] == source) {
# parsers[i] = target;
# }
# }
# }
method getChildren(self: ListParser): seq[Parser] =
self.parsers
# public List<Parser> getChildren() {
# return Arrays.asList(parsers);
# }
method name*(self: ListParser): string =
"ListParser"
# A parser that parses a sequence of parsers.
type
SequenceParser* = ref object of ListParser
proc newSequenceParser*(parsers: seq[Parser]): SequenceParser =
SequenceParser(parsers: parsers)
method parseOn*[T](self: SequenceParser, context: Context): Result =
var
current = context
elements = newSeq[T](self.parsers.len)
for parser in self.parsers:
result = parser.parseOn(current)
if result.isFailure:
return
elements.add(get[T](result))
current = result
current.success[T](elements)
# public Result parseOn(Context context) {
# Context current = context;
# List<Object> elements = new ArrayList<>(parsers.length);
# for (Parser parser : parsers) {
# Result result = parser.parseOn(current);
# if (result.isFailure()) {
# return result;
# }
# elements.add(result.get());
# current = result;
# }
# return current.success(elements);
# }
method seq*(self: SequenceParser, others: varargs[Parser]): Parser =
newSequenceParser(self.parsers & @others)
# let all = newSeq[Parser](self.parsers.len + others.len)
# public Parser seq(Parser... others) {
# Parser[] array = Arrays.copyOf(parsers, parsers.length + others.length);
# System.arraycopy(others, 0, array, parsers.length, others.length);
# return new SequenceParser(array);
# }
method copy*(self: SequenceParser): Parser =
var parsersCopy = self.parsers
newSequenceParser(parsersCopy)
# public Parser copy() {
# return new SequenceParser(Arrays.copyOf(parsers, parsers.length));
# }
method name*(self: SequenceParser): string =
"SequenceParser"
# An abstract parser that repeatedly parses between 'min' and 'max' instances of its delegate and
# that requires the input to be completed with a specified parser 'limit'. Subclasses provide
# repeating behavior as typically seen in regular expression implementations (non-blind).
type
LimitedRepeatingParser* = ref object of RepeatingParser
limit*: Parser
proc newLimitedRepeatingParser*(delegate: Parser, limit: Parser not nil, min, max: int): LimitedRepeatingParser =
LimitedRepeatingParser(delegate: delegate, limit: limit, min: min, max: max)
method getChildren(self: LimitedRepeatingParser): seq[Parser] =
@[self.delegate, self.limit]
method replace*(self: LimitedRepeatingParser, source, target: Parser) =
procCall(DelegateParser(self).replace(source, target))
if self.limit == source:
self.limit = target
method name*(self: LimitedRepeatingParser): string =
"LimitedRepeatingParser"
# A greedy repeating parser, commonly seen in regular expression implementations. It aggressively
# consumes as much input as possible and then backtracks to meet the 'limit' condition.
type
GreedyRepeatingParser* = ref object of LimitedRepeatingParser
proc newGreedyRepeatingParser*(delegate, limit: Parser, min, max: int): GreedyRepeatingParser =
GreedyRepeatingParser(delegate: delegate, limit: limit, min: min, max: max)
method copy*(self: GreedyRepeatingParser): Parser =
newGreedyRepeatingParser(self.delegate, self.limit, self.min, self.max)
#method parseOn*[T](self: GreedyRepeatingParser, context: Context): Result =
# result = self.delegate.parseOn(context)
# if result.isSuccess:
# return context.success(get[T](result))
method parseOn*[T](self: GreedyRepeatingParser, context: Context): Result =
var
current = context
elements = newSeq[T]()
while elements.len < self.min:
result = self.delegate.parseOn(current)
if result.isFailure:
return
elements.add(get[T](result))
current = result
var contexts = newSeq[Context]()
contexts.add(current)
while self.max == UNBOUNDED or elements.len < max:
result = self.delegate.parseOn(current)
if result.isFailure:
break
elements.add(get[T](result))
contexts.add(current = result)
while true:
var stop = self.limit.parseOn(contexts[contexts.high])
if stop.isSuccess:
return contexts[contexts.high].success(elements)
if elements.len == 0:
return stop
contexts.pop()
elements.pop()
if contexts.len == 0:
return stop
discard """
public Result parseOn(Context context) {
Context current = context;
List<Object> elements = new ArrayList<>();
while (elements.size() < min) {
Result result = delegate.parseOn(current);
if (result.isFailure()) {
return result;
}
elements.add(result.get());
current = result;
}
List<Context> contexts = new ArrayList<>();
contexts.add(current);
while (max == UNBOUNDED || elements.size() < max) {
Result result = delegate.parseOn(current);
if (result.isFailure()) {
break;
}
elements.add(result.get());
contexts.add(current = result);
}
while (true) {
Result stop = limit.parseOn(contexts.get(contexts.size() - 1));
if (stop.isSuccess()) {
return contexts.get(contexts.size() - 1).success(elements);
}
if (elements.isEmpty()) {
return stop;
}
contexts.remove(contexts.size() - 1);
elements.remove(elements.size() - 1);
if (contexts.isEmpty()) {
return stop;
}
}
}
}
"""
# A parser that uses the first parser that succeeds.
type
ChoiceParser* = ref object of ListParser
proc newChoiceParser*(parsers: varargs[Parser]): ChoiceParser =
ChoiceParser(parsers: @parsers)
method orr*(self: ChoiceParser, others: varargs[Parser]): Parser =
## Returns a parser that accepts the receiver or `other`. The resulting parser returns the
## parse result of the receiver, if the receiver fails it returns the parse result of `other`
## (exclusive ordered choice).
newChoiceParser(self.parsers & @others)
method copy*(self: ChoiceParser): Parser =
let parsersCopy = self.parsers
newChoiceParser(parsersCopy)
method parseOn*(self: ChoiceParser, context: Context): Result =
for parser in self.parsers:
result = parser.parseOn(context)
if result.isSuccess:
return
# public Result parseOn(Context context) {
# Result result = null;
# for (Parser parser : parsers) {
# result = parser.parseOn(context);
# if (result.isSuccess()) {
# return result;
# }
# }
# return result;
# }
# The and-predicate, a parser that succeeds whenever its delegate does, but does not consume the
# input stream [Parr 1994, 1995].
type
AndParser* = ref object of DelegateParser
proc newAndParser*(delegate: Parser): AndParser =
AndParser(delegate)
method parseOn*[T](self: AndParser, context: Context): Result =
result = self.delegate.parseOn(context)
if result.isSuccess:
return context.success(get[T](result))
method copy*(self: AndParser): Parser =
newAndParser(self.delegate)
# Testing a type class to match the Java interface
# This means, a ContinuationHandler is any type which
# you can call `apply` on, with the given arguments.
type
ContinuationHandler = generic handler
handler.callParseOn(Parser, Context) is Result
#handler.apply(proc(c: Context): Result, Context) is Result
# Just a sample ContinuationHandler type
type
Sammy = ref object
proc callParseOn*(self: Sammy, p: Parser, c: Context): Result =
p.parseOn(c)
# Continuation parser that when activated captures a continuation function and passes it together
# with the current context into the handler.
type
ContinuationParser*[T] = ref object of DelegateParser
handler*: T
proc newContinuationParser*(delegate: Parser, handler: ContinuationHandler): ContinuationParser =
ContinuationParser(delegate: delegate, handler: handler)
# TODO
method parseOn*(self: ContinuationParser, context: Context): Result =
self.handler.callParseOn(self, context)
method copy*(self: ContinuationParser): Parser =
newContinuationParser(self.delegate, self.handler)
method hasEqualProperties*(self: ContinuationParser, other: ContinuationParser): bool =
procCall(Parser(self).hasEqualProperties(Parser(other))) and self.handler == other.handler
# The not-predicate, a parser that succeeds whenever its delegate does not, but consumes no input [Parr 1994, 1995].
type
NotParser* = ref object of DelegateParser
message*: string
proc newNotParser*(delegate: Parser, message: string): NotParser =
NotParser(delegate: delegate, message: message)
method parseOn*[T](self: NotParser, context: Context): Result =
if self.delegate.parseOn(context).isFailure:
return context.success(nil)
else:
return context.failure(self.message)
method hasEqualProperties*(self: NotParser, other: NotParser): bool =
procCall(Parser(self).hasEqualProperties(Parser(other))) and self.message == other.message
method copy*(self: NotParser): NotParser =
newNotParser(self.delegate, self.message)
method `$`*(self: NotParser): string =
procCall($Parser(self)) & "[" & self.message & "]"
# Parses a single character.
type
CharacterParser* = ref object of Parser
proc newCharacterParser*(predicate: CharacterPredicate, message: string): Parser =
CharacterParser(predicate, message)
proc off*(predicate: CharacterPredicate, message: string): Parser =
newCharacterParser(predicate, message)
discard """
/**
* Returns a parser that accepts a specific {@link CharacterPredicate}.
*/
public static Parser of(CharacterPredicate predicate, String message) {
return new CharacterParser(predicate, message);
}
/**
* Returns a parser that accepts a specific {@code character}.
*/
public static Parser of(char character) {
return of(character, "'" + character + "' expected");
}
public static Parser of(char character, String message) {
return of(CharacterPredicate.of(character), message);
}
/**
* Returns a parser that accepts any character.
*/
public static Parser any() {
return any("any character expected");
}
public static Parser any(String message) {
return of(CharacterPredicate.any(), message);
}
/**
* Returns a parser that accepts any of the provided characters.
*/
public static Parser anyOf(String chars) {
return anyOf(chars, "any of '" + chars + "' expected");
}
public static Parser anyOf(String chars, String message) {
return of(CharacterPredicate.anyOf(chars), message);
}
/**
* Returns a parser that accepts no character.
*/
public static Parser none() {
return none("no character expected");
}
public static Parser none(String message) {
return of(CharacterPredicate.none(), message);
}
/**
* Returns a parser that accepts none of the provided characters.
*/
public static Parser noneOf(String chars) {
return noneOf(chars, "none of '" + chars + "' expected");
}
public static Parser noneOf(String chars, String message) {
return of(CharacterPredicate.noneOf(chars), message);
}
/**
* Returns a parser that accepts a single digit.
*/
public static Parser digit() {
return digit("digit expected");
}
public static Parser digit(String message) {
return new CharacterParser(Character::isDigit, message);
}
/**
* Returns a parser that accepts a single letter.
*/
public static Parser letter() {
return letter("letter expected");
}
public static Parser letter(String message) {
return of(Character::isLetter, message);
}
/**
* Returns a parser that accepts an lower-case letter.
*/
public static Parser lowerCase() {
return lowerCase("lowercase letter expected");
}
public static Parser lowerCase(String message) {
return of(Character::isLowerCase, message);
}
/**
* Returns a parser that accepts a specific character pattern.
* <p>
* Characters match themselves. A dash {@code -} between two characters matches the range of those
* characters. A caret {@code ^} at the beginning negates the pattern.
*/
public static Parser pattern(String pattern) {
return pattern(pattern, "[" + pattern + "] expected");
}
public static Parser pattern(String pattern, String message) {
return of(CharacterPredicate.pattern(pattern), message);
}
/**
* Returns a parser that accepts a specific character range.
*/
public static Parser range(char start, char stop) {
return range(start, stop, start + ".." + stop + " expected");
}
public static Parser range(char start, char stop, String message) {
return of(CharacterPredicate.range(start, stop), message);
}
/**
* Returns a parser that accepts an upper-case letter.
*/
public static Parser upperCase() {
return upperCase("uppercase letter expected");
}
public static Parser upperCase(String message) {
return of(Character::isUpperCase, message);
}
/**
* Returns a parser that accepts a single whitespace.
*/
public static Parser whitespace() {
return whitespace("whitespace expected");
}
public static Parser whitespace(String message) {
return of(Character::isWhitespace, message);
}
/**
* Returns a parser that accepts a single letter or digit.
*/
public static Parser word() {
return word("letter or digit expected");
}
public static Parser word(String message) {
return of(Character::isLetterOrDigit, message);
}
private final CharacterPredicate matcher;
private final String message;
private CharacterParser(CharacterPredicate matcher, String message) {
this.matcher = Objects.requireNonNull(matcher, "Undefined matcher");
this.message = Objects.requireNonNull(message, "Undefined message");
}
@Override
public Result parseOn(Context context) {
String buffer = context.getBuffer();
int position = context.getPosition();
if (position < buffer.length()) {
char result = buffer.charAt(position);
if (matcher.test(result)) {
return context.success(result, position + 1);
}
}
return context.failure(message);
}
@Override
public Parser neg(String message) {
return of(matcher.not(), message);
}
@Override
protected boolean hasEqualProperties(Parser other) {
return super.hasEqualProperties(other) &&
Objects.equals(matcher, ((CharacterParser) other).matcher) &&
Objects.equals(message, ((CharacterParser) other).message);
}
@Override
public Parser copy() {
return of(matcher, message);
}
@Override
public String toString() {
return super.toString() + "[" + message + "]";
}
"""
# /**
# * Returns a list of all successful overlapping parses of the {@code input}.
# */
# @SuppressWarnings("unchecked")
# public <T> List<T> matches(String input) {
# List<Object> list = new ArrayList<>();
# this.and().map(list::add).seq(any()).or(any()).star().parse(input);
# return (List<T>) list;
# }
method matchesSkipping*[T](self: Parser, input: string): seq[T] =
result = @[]
self.map(result.add).`or`(any).star.parse(input)
# /**
# * Returns a list of all successful non-overlapping parses of the {@code input}.
# */
# @SuppressWarnings("unchecked")
# public <T> List<T> matchesSkipping(String input) {
# List<Object> list = new ArrayList<>();
# this.map(list::add).or(any()).star().parse(input);
# return (List<T>) list;
# }
method repeat*(self: Parser, min, max: int): Parser =
## Returns a parser that accepts the receiver between `min` and `max` times. The
## resulting parser returns a list of the parse results of the receiver.
##
## This is a greedy and blind implementation that tries to consume as much input as possible and
## that does not consider what comes afterwards.
newPossessiveRepeatingParser(self, min, max)
# public Parser repeat(int min, int max) {
# return new PossessiveRepeatingParser(this, min, max);
# }
method optional*[T](self: Parser, otherwise: T): Parser =
## Returns new parser that accepts the receiver, if possible.
## The returned value can be provided as `otherwise`.
newOptionalParser(self, otherwise)
# public Parser optional(Object otherwise) {
# return new OptionalParser(this, otherwise);
# }
method optional*[T](self: Parser): Parser =
## Returns new parser that accepts the receiver, if possible. The resulting parser returns the
## result of the receiver, or `nil` if not applicable.
optional[T](self, nil)
# public Parser optional() {
# return optional(null);
# }
method start*(self: Parser): Parser =
## Returns a parser that accepts the receiver zero or more times. The resulting parser returns a
## list of the parse results of the receiver.
##
## This is a greedy and blind implementation that tries to consume as much input as possible and
## that does not consider what comes afterwards.
self.repeat(0, UNBOUNDED)
# public Parser star() {
# return repeat(0, RepeatingParser.UNBOUNDED);
# }
# Forward dec
method repeatGreedy*(self, limit: Parser, min, max: int): Parser
method starGreedy*(self, limit: Parser): Parser =
## Returns a parser that parses the receiver zero or more times until it reaches a `limit`.
## This is a greedy non-blind implementation of the `star <#star>`_ operator.
## The `limit` is not consumed.
self.repeatGreedy(limit, 0, UNBOUNDED)
# public Parser starGreedy(Parser limit) {
# return repeatGreedy(limit, 0, RepeatingParser.UNBOUNDED);
# }
method repeatLazy*(self, limit: Parser, min, max: int): Parser
method starLazy*(self, limit: Parser): Parser =
## Returns a parser that parses the receiver zero or more times until it reaches a `limit`.
## This is a lazy non-blind implementation of the `star <#star>`_ operator.
## The `limit` is not consumed.
self.repeatLazy(limit, 0, UNBOUNDED)
# public Parser starLazy(Parser limit) {
# return repeatLazy(limit, 0, RepeatingParser.UNBOUNDED);
# }
method plus*(self: Parser): Parser =
## Returns a parser that accepts the receiver one or more times. The resulting parser returns a
## list of the parse results of the receiver.
##
## This is a greedy and blind implementation that tries to consume as much input as possible and
## that does not consider what comes afterwards.
self.repeat(1, UNBOUNDED)
# public Parser plus() {
# return repeat(1, RepeatingParser.UNBOUNDED);
# }
method plusGreedy*(self, limit: Parser): Parser =
## Returns a parser that parses the receiver one or more times until it reaches `limit`.
## This is a reedy non-blind implementation of the `plus <#plus>`_ operator.
## The `limit` is not consumed.
self.repeatGreedy(limit, 1, UNBOUNDED)
# public Parser plusGreedy(Parser limit) {
# return repeatGreedy(limit, 1, RepeatingParser.UNBOUNDED);
# }
method plusLazy*(self, limit: Parser): Parser =
## Returns a parser that parses the receiver one or more times until it reaches a `limit`.
## This is a lazy non-blind implementation of the `plus <#plus>`_ operator.
## The `limit` is not consumed.
self.repeatLazy(limit, 1, UNBOUNDED)
# public Parser plusLazy(Parser limit) {
# return repeatLazy(limit, 1, RepeatingParser.UNBOUNDED);
# }
method repeatGreedy*(self, limit: Parser, min, max: int): Parser =
## Returns a parser that parses the receiver at least `min` and at most `max` times
## until it reaches a {@code limit}. This is a greedy non-blind implementation of the
## `repeat <#repeat>`_ operator. The `limit` is not consumed.
newGreedyRepeatingParser(self, limit, min, max)
# public Parser repeatGreedy(Parser limit, int min, int max) {
# return new GreedyRepeatingParser(this, limit, min, max);
# }
method repeatLazy*(self, limit: Parser, min, max: int): Parser =
## Returns a parser that parses the receiver at least `min` and at most `max` times
## until it reaches a `limit`. This is a lazy non-blind implementation of the
## `repeat <#repeat>`_ operator. The `limit` is not consumed.
newGreedyRepeatingParser(self, limit, min, max)
# public Parser repeatLazy(Parser limit, int min, int max) {
# return new LazyRepeatingParser(this, limit, min, max);
# }
method times*(self: Parser, count: int): Parser =
## Returns a parser that accepts the receiver exactly `count` times.
## The resulting parser returns a list of the parse results of the receiver.
self.repeat(count, count)
# public Parser times(int count) {
# return repeat(count, count);
# }
method seq*(self: Parser, others: varargs[Parser]): Parser =
## Returns a parser that accepts the receiver followed by `others`. The resulting parser
## returns a list of the parse result of the receiver followed by the parse result of `others`.
## Calling this method on an existing sequence code not nest this sequence into a new one,
## but instead augments the existing sequence with `others`.
# Alternative low level version of addFirst
#var s = newSeq[Parser](others.len + 1)
#s[0] = self
#var j = 1
#for p in others:
# s[j] = p
# inc(j)
#newSequenceParser(s)
# Quick version of addFirst
newSequenceParser(@[self] & @others)
# public Parser seq(Parser... others) {
# Parser[] parsers = new Parser[1 + others.length];
# parsers[0] = this;
# System.arraycopy(others, 0, parsers, 1, others.length);
# return new SequenceParser(parsers);
# }
method orr*(self: Parser, others: varargs[Parser]): Parser =
## Returns a parser that accepts the receiver or `other`. The resulting parser returns the
## parse result of the receiver, if the receiver fails it returns the parse result of `other`
## (exclusive ordered choice).
newChoiceParser(@[self] & @others)
# public Parser or(Parser... others) {
# Parser[] parsers = new Parser[1 + others.length];
# parsers[0] = this;
# System.arraycopy(others, 0, parsers, 1, others.length);
# return new ChoiceParser(parsers);
# }
method andd*(self: Parser): Parser =
## Returns a parser (logical and-predicate) that succeeds whenever the receiver does, but never
## consumes input.
newAndParser(self)
# public Parser and() {
# return new AndParser(this);
# }
method callCC*(self: Parser, handler: ContinuationHandler): Parser =
## Returns a parser that is called with its current continuation.
newContinuationParser(self, handler)
# public Parser callCC(ContinuationParser.ContinuationHandler handler) {
# return new ContinuationParser(this, handler);
# }
method nott*(self: Parser): Parser =
## Returns a parser (logical not-predicate) that succeeds whenever the receiver fails, but never
## consumes input.
raise newException(Exception, "unexpected call to nott")
# public Parser not() {
# return not("unexpected");
# }
method nott*(self: Parser, message: string): Parser =
## Returns a parser (logical not-predicate) that succeeds whenever the receiver fails, but never
## consumes input.
newNotParser(self, message)
# public Parser not(String message) {
# return new NotParser(this, message);
# }
method neg*(self: Parser, message: string): Parser =
## Returns a parser that consumes any input token (character), but the receiver.
self.nott(message).seq(CharacterParser.any()).pick(1)
# public Parser neg(String message) {
# return not(message).seq(CharacterParser.any()).pick(1);
# }
method neg*(self: Parser): Parser =
## Returns a parser that consumes any input token (character), but the receiver.
self.neg($self & " not expected")
# public Parser neg() {
# return neg(this + " not expected");
# }
method flatten*(self: Parser): Parser =
## Returns a parser that discards the result of the receiver, and returns a sub-string of the
## consumed range in the string/list being parsed.
newFlattenParser(self)
# public Parser flatten() {
# return new FlattenParser(this);
# }
method token*(self: Parser): Parser =
## Returns a parser that returns a {@link Token}. The token carries the parsed value of the
## receiver {@link Token#getValue()}, as well as the consumed input {@link Token#getInput()} from
## {@link Token#getStart()} to {@link Token#getStop()} of the input being parsed.
newTokenParser(self)
# public Parser token() {
# return new TokenParser(this);
# }
method trim*(self: Parser): Parser =
## Returns a parser that consumes whitespace before and after the receiver.
self.trim(CharacterParser.whitespace())
# public Parser trim() {
# return trim(CharacterParser.whitespace());
# }
method trim*(self: Parser, both: Parser): Parser =
## Returns a parser that consumes input on `both` sides of the receiver.
self.trim(both, both)
# public Parser trim(Parser both) {
# return trim(both, both);
# }
method trim*(self, before, after: Parser): Parser =
## Returns a parser that consumes input {@code before} and {@code after} the receiver.
newTrimmingParser(self, before, after)
# public Parser trim(Parser before, Parser after) {
# return new TrimmingParser(this, before, after);
# }
method endd*(self: Parser): Parser =
## Returns a parser that succeeds only if the receiver consumes the complete input.
self.endd("end of input expected")
# public Parser end() {
# return end("end of input expected");
# }
method endd*(self: Parser, message: string): Parser =
## Returns a parser that succeeds only if the receiver consumes the complete input, otherwise
## return a failure with the {@code message}.
newEndOfInputParser(self, message)
# public Parser end(String message) {
# return new EndOfInputParser(this, message);
# }
method settable*(self: Parser): SettableParser =
## Returns a parser that points to the receiver, but can be changed to point to something else at
## a later point in time.
newSettableParserWith(self)
# public SettableParser settable() {
# return SettableParser.with(this);
# }
method map*[A, B](self: Parser, function: proc (x: A): B {.closure.}): Parser =
## Returns a parser that evaluates a {@code function} as the production action on success of the
## receiver.
newActionParser(self, function)
# public <A, B> Parser map(Function<A, B> function) {
# return new ActionParser<>(this, function);
# }
method pick*(self: Parser, index: int): Parser =
## Returns a parser that transform a successful parse result by returning the element at {@code
## index} of a list. A negative index can be used to access the elements from the back of the
## list.
self.map(nthOfList(index))
# public Parser pick(int index) {
# return map(Functions.nthOfList(index));
# }
method permute*(self: Parser, indexes: varargs[int]): Parser =
## Returns a parser that transforms a successful parse result by returning the permuted elements
## at {@code indexes} of a list. Negative indexes can be used to access the elements from the back
## of the list.
self.map(permutationOfList(indexes))
# public Parser permute(int... indexes) {
# return this.map(Functions.permutationOfList(indexes));
# }
## Returns a new parser that parses the receiver one or more times, separated
## by a {@code separator}.
newSequenceParser(self, newSequenceParser(separator, self).star())
.map(
# public Parser separatedBy(Parser separator) {
# return new SequenceParser(this, new SequenceParser(separator, this).star())
# .map(new Function<List<List<List<Object>>>, List<Object>>() {
# @Override
# public List<Object> apply(List<List<List<Object>>> input) {
# List<Object> result = new ArrayList<>();
# result.add(input.get(0));
# input.get(1).forEach(result::addAll);
# return result;
# }
# });
# }
discard """
/**
* Returns a new parser that parses the receiver one or more times, separated
* and possibly ended by a {@code separator}."
*/
public Parser delimitedBy(Parser separator) {
return separatedBy(separator)
.seq(separator.optional())
.map(new Function<List<List<Object>>, List<Object>>() {
@Override
public List<Object> apply(List<List<Object>> input) {
List<Object> result = new ArrayList<>(input.get(0));
if (input.get(1) != null) {
result.add(input.get(1));
}
return result;
}
});
}
/**
* Returns a shallow copy of the receiver.
*/
public abstract Parser copy();
/**
* Recursively tests for structural similarity of two parsers.
*
* The code can automatically deals with recursive parsers and parsers that refer to other
* parsers. This code is supposed to be overridden by parsers that add other state.
*/
public boolean isEqualTo(Parser other) {
return isEqualTo(other, new HashSet<>());
}
/**
* Recursively tests for structural similarity of two parsers.
*/
protected boolean isEqualTo(Parser other, Set<Parser> seen) {
if (this.equals(other) || seen.contains(this)) {
return true;
}
seen.add(this);
return getClass().equals(other.getClass())
&& hasEqualProperties(other)
&& hasEqualChildren(other, seen);
}
/**
* Compares the properties of two parsers.
*
* Override this method in all subclasses that add new state.
*/
protected boolean hasEqualProperties(Parser other) {
return true;
}
/**
* Compares the children of two parsers.
*
* Normally subclasses should not override this method, but instead {@link #getChildren()}.
*/
protected boolean hasEqualChildren(Parser other, Set<Parser> seen) {
List<Parser> thisChildren = this.getChildren();
List<Parser> otherChildren = other.getChildren();
if (thisChildren.size() != otherChildren.size()) {
return false;
}
for (int i = 0; i < thisChildren.size(); i++) {
if (!thisChildren.get(i).isEqualTo(otherChildren.get(i), seen)) {
return false;
}
}
return true;
}
"""